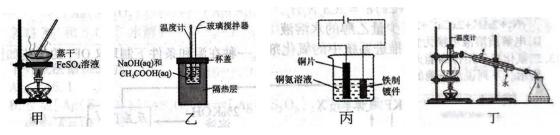
潍坊市高考模拟考试

化学


2024.5

可能用到的相对原子质量: H1 B11 C12 N14 O16 F19 Na 23 Mg 24 S 32 Cl 35.5 Mn 55 Fe 56 Co 59 Bi 209

一、选择题: 本题共 10 小题,每小题 2 分,共 20 分。每小题只有一个选项符合题目要求。

1.2024年"两会"提出的"新质生产力"涵盖新材料、新能源、生物医药等产业链。下列说法错误的是

- A.精确控制硬化过程的可编程水泥属于硅酸盐材料
- B.具有独特光学、电学性能的纳米半导体 CdTe 量子点属于胶体
- C.福建号航母使用高性能富锌底漆是采用牺牲阳极保护法防腐蚀
- D.新型药物(VV116)所含氕与氘互为同位素
- 2.下列操作或装置能达到实验目的的是

A.甲: 制备 FeSO₄ 固体

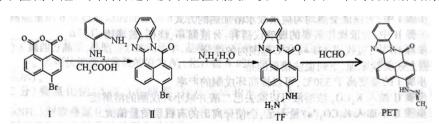
B.乙: 测定中和反应反应热

C.丙: 在铁质镀件表面镀铜

D.丁: 分离甲苯和乙醇

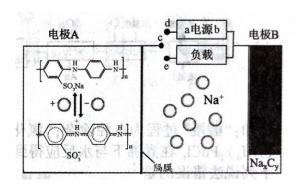
3.下列分子或离子中,空间构型不为直线形的是

 $A. C_2Cl_2$


B. NO₂⁺

C. I₃⁺

D. SCN-


4.血红蛋白结合 O_2 后的结构如图所示,CO 也可与血红蛋白结合。下列说法错误的是

- A.血红蛋白中心离子 Fe2+与卟啉环形成 6 个螯合键
- B.CO与血红蛋白结合时, C原子提供孤电子对
- C.第一电离能: N>H>C
- D.基态 Fe²⁺含有 4 个未成对电子
- 5.2-苯并咪唑(TF)可用于检测甲醛,其制备过程及甲醛检测反应机理如下图。下列说法错误的是

- A.一定条件下, 1mol 物质 I 最多可消耗 3molNaOH
- B. Imol 物质 II 可与 9molH₂ 反应
- C.TF 既可以与酸又可以与碱反应
- D. TF 检测甲醛的过程中发生了加成和消去两步反应

6.钠离子电池具有充电速度快和低温环境性能优越的特点,其电极材料的导电聚合物中掺杂磺酸基可增强其电化学活性,其工作原理如图所示。下列说法正确的是

A.c连接d时,Na+透过隔膜进入电极A室

B.c连接d时,电源a极的电势比b极低

C.c连接e时,每转移1 mole,两电极质量变化相差23g

D.c连接e时,A的电极反应为:

阅读下列材料,完成7~8题:

环戊酮是合成新型降压药物的中间体,实验室制备环戊酮($M=84g \cdot mol^{-1}$)的反应原理:

$$\begin{array}{c|c}
O & O \\
\parallel & \parallel \\
HOC-(CH_2)_4-COH & \xrightarrow{Ba(OH)_2, \Delta} & CH_2-CH_2 \\
\hline
CH_2-CH_2 & C=O + CO_2 \uparrow + H_2O
\end{array}$$

己知:

a.己二酸 M = 146g·mol⁻¹,熔点为152℃,330℃左右升华;

b.环戊酮沸点131℃, 着火点30℃。

步骤如下:

I.将 43.8g 己二酸和适量 Ba(OH)2置于蒸馏烧瓶中,维持温度 285~290℃,均匀加热 20 分钟;

II.在馏出液中加入适量的 K_2CO_3 浓溶液,振荡锥形瓶、分液除去水层;向有机层中加入 $K_2CO_3(s)$,振荡分离出有机层;

III.对 II 所得有机层进行蒸馏, 收集馏分, 称量获得产品18.9g, 计算产率。

7.对于上述实验,下列说法正确的是

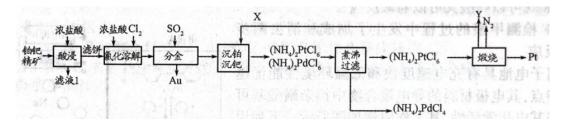
A.步骤 I 中,为增强冷凝效果应选用球形冷凝管

B.步骤 I 中,为保证受热均匀应采取水浴加热的方式

C.步骤 II 中, 分液操作需要的玻璃仪器有: 分液漏斗、烧杯、玻璃棒

D.步骤 III 中,应收集131~135℃范围内的馏分

8.根据上述实验原理,下列说法错误的是


A.步骤 I 的温度高于330℃,可以提高环戊酮的产率

B.步骤 II 加入 K₂CO₃ 浓溶液可以除去己二酸并减小环戊酮的溶解度

C.步骤 II 中加入 K₂CO₃(s)量不足,会使分离出的有机层质量偏大

D.环戊酮的产率是75%

9.铂钯精矿中的 Au、 Pt、 Pd 含量较低, Cu 、 Zn 、 Pb 含量较高。一种从铂钯精矿中提取 Au 和 Pt 的工艺如图所示。

已知:"酸浸"过程为电控除杂;"氯化溶解"后所得主要产物为 $HAuCl_4$ 、 H_2PtCl_6 、 H_2PdCl_6 ; $(NH_4)_2$ $PdCl_6$ 在煮沸下与水反应得到易溶于水的 $(NH_4)_2$ $PdCl_4$ 。

下列说法错误的是

A. "酸浸"可除去Cu、Zn、Pb

B. "分金"过程发生反应的化学方程式是 $2HAuCl_4 + 3SO_2 + 6H_2O = 2Au + 3H_2SO_4 + 8HCl$

C. "煅烧"过程中每消耗 $1 \text{mol}(NH_4)$, $PtCl_6$ 转移 6mole^-

D. "煮沸"过程中产生 HCl

10.3-卤代吡啶是一种重要的农药中间体。可由吡咯在强碱条件下与卤仿(CHX_3 ,X=Cl ,Br ,I)重排生成,其反应机理如图。

下列说法错误的是

A.吡咯和 3-氯吡啶中均含有大π键

B.在水中的溶解度: 吡啶<3-氯吡啶

C.二氯卡宾的制备可表示为: $CHCl_3 + NaOH \longrightarrow : CCl_2 + H_2O + NaCl$

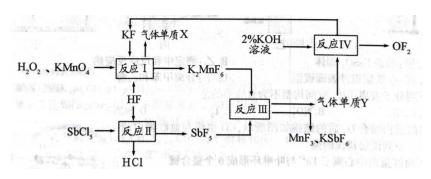
二、选择题:本题共5小题,每小题4分,共20分。每小题只有一个或两个选项符合题意,全部选对得4分,选对但不全的得2分,有选错的得0分。

11.下列实验操作及现象与对应结论不匹配的是

	实验操作	现象	结论
A	加热麦芽糖和稀硫酸的混合溶液,冷却后加入 NaOH溶液至碱性,再加入银氨溶液,加热	有银镜产生	水解产物中一定含有还原性糖
В	将 TiCl ₄ 液体和 FeCl ₃ 固体分别暴露在潮湿空 气中	前者会冒"白烟"	水解程度: TiCl ₄ > FeCl ₃
С	向 $\left[Ag \left(NH_3 \right)_2 \right]$ OH 溶液中加入过量稀盐酸	有白色沉淀产生	Cl ⁻ 与Ag ⁺ 结合的能力强于NH ₃ 分子与Ag ⁺ 的配位能力
D	在硬质试管中对石蜡油加强热,将产生的气体 通入酸性 KMO ₄ 溶液中	酸性 KMnO ₄ 溶液紫 色褪去	气体中含有不饱和烃

12. NH_3 是生产化肥、含氮有机化学品、药物和聚合物的重要化合物,以乙醇为质子导体在电解池中利用连续 Ca 介导($Ca^{2+} \rightarrow Ca \rightarrow Ca_xN_yH_z \rightarrow Ca^{2+}$)合成 NH_3 的装置如图所示。下列说法错误的是

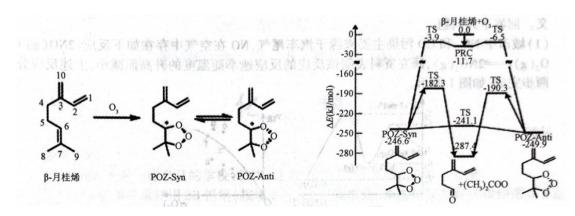
A. Ca²⁺ 的作用是活化 N₂


B.每产生1molNH₃需补充138gC₂H₅OH

C. 阴极反应包含如下过程:

$$yN_2 + 2zH^+ + 2xCa^{2+} + 2(z + 2x)e^- = 2Ca_xN_yH_z$$

D.电解质溶液可换为含有少量乙醇的水溶液


A.反应 I 中氧化产物和还原产物的物质的量之比为 23

B.还原性: $H_2O_2 > K_2MnF_6 > MnF_3$

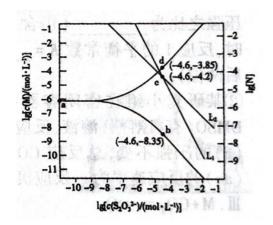
C.反应 I~IV 中, 氟元素化合价发生变化的反应有 3 个

D.制取 lmolOF₂,至少需加入 60molHF

14.β-月桂烯与O₃的加成反应的部分机理和反应势能变化如图所示。

下列说法错误的是

A.β-月桂烯与丁基苯互为同分异构体


B.POZ-Anti 比 POZ-Syn 更稳定

C.升高温度,
$$\frac{c(POZ-Syn)}{c(POZ-Anti)}$$
一定減小

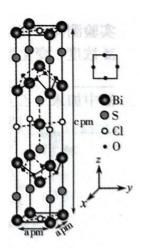
$$D.β$$
-月桂烯与 O_3 经历两种历程得到 O_3 释放的能量相[

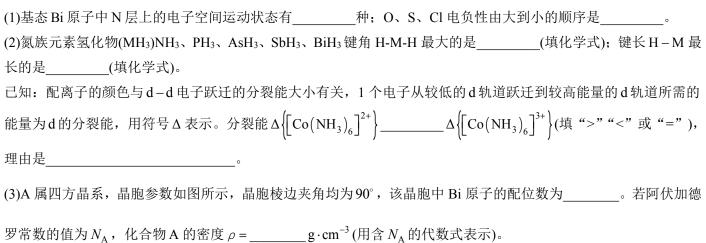
15.向 AgBr 饱和溶液(有足量 AgBr 固体)中滴加 Na₂S₂O₃ 溶液,发生反应 Ag⁺ + S₂O₃^{2−} ⇌ $\left[Ag(S_2O_3) \right]^-$ 和

$$\begin{split} & \left[\text{Ag}(S_2O_3) \right]^- + S_2O_3^{2-} \\ \rightleftharpoons & \left[\text{Ag}(S_2O_3)_2 \right]^{3\text{--1}} \circ \text{lg} \left[c(M) / \left(\text{mol} \cdot L^{-1} \right) \right] , \ \text{lg}[N] \\ = & \text{lg} \left[c \left(S_2O_3^{2-} \right) / \left(\text{mol} \cdot L^{-1} \right) \right] \text{的关系如图所示}. \end{split}$$
 (其中 M 代表 Ag⁺ 或 Br⁻; N 代表 $\frac{c \left(\text{Ag}^+ \right)}{c \left\{ \left[\text{Ag}^2(S_2O_3) \right]^- \right\}} \stackrel{\text{d}}{=} \frac{c \left(\text{Ag}^+ \right)}{c \left\{ \left[\left(\text{Ag}(S_2O_3)_2 \right]^{3-1} \right\}}; \ \text{忽略 Ag}^+ \text{和 } S_2O_3^{2-} \text{水解}) \end{split}$

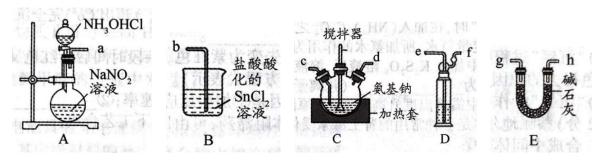
下列说法错误的是

A. a = -6.1

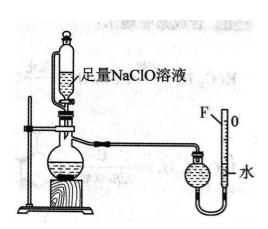

B.反应 $[Ag(S_2O_3)]^- + S_2O_3^{2-} \Longrightarrow [Ag(S_2O_3)_2]^{3-}$ 的平衡常数 $K = 10^{-4.6}$


C. b 点时, $c(Br^-) = c(Ag^+) + c\{[Ag(S_2O_3)]^-\} + c\{[Ag(S_2O_3)_2]^3\}$

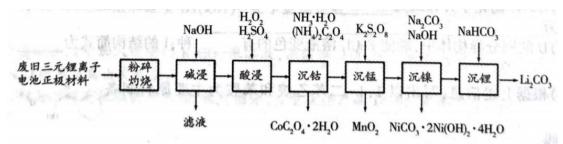
$$D. \ c(S_2O_3^{2-}) = 0.01 \text{mol} \cdot L^{-1} \ \text{时,若溶液中} \ c\{[Ag(S_2O_3)_2]^{3-}\} = x \text{mol} \cdot L^{-1} \ \text{,则} \ c(Br^-) = \frac{10^{-3.8}}{x} \ \text{mol} \cdot L^{-1}$$


三、非选择题:本题共5小题,共60分。

 $16.(12 \, f)$ Bi、O、S、Cl 组成的化合物 A 通过 S 空位的掺杂可引入载流子诱发超导,A 的晶体结构和氧原子沿 z 轴的投影如图所示。回答下列问题:


17.(12 分)叠氮化钠 (NaN_3) 在防腐、有机合成和汽车行业有着广泛的用途。用氨基钠 $(NaNH_2)$ 制取叠氮化钠的化学 方程式为 $2NaNH_2+N_2O$ — $NaN_3+NaOH+NH_3$ 。实验室用下列装置制取叠氮化钠并测定其纯度。

己知:


- ①氨基钠(NaNH₂)熔点为208℃,易潮解和氧化;
- $2N_2O$ 有强氧化性,不与酸、碱反应。

回答下列问题:

(1)仪器的连接顺序为 a ·	→b(仪器不能重复使用)	。装置 B 的作用为	,装置 D 中应选用的试
剂为。			
(2)制备 NaN ₃ 时进行操作	作: (i)检验装置气密性并添加药	品;(ii)······;(iii)打开加热	热套。步骤(ii)的操作是。
(3)装置 A 中反应除生成	装置C中需要的物质外,还生	成 NaCl 等。其反应的化	之学方程式是。
(4) NaN ₃ 纯度测定:取 n	ng 反应后装置 C 中所得固体,	用如图所示装置测定产品	品的纯度(原理为:加入 NaClO 溶液将
NaN ₃ 氧化成N ₂ ,测定	N_2 的体积,从而计算产品纯度	:)。	
① F 的初始读数为 V_1 mL	、末读数为 V_2 m L ,本实验条 ℓ	$‡下气体摩尔体积为V_mL$	·mol ⁻¹ 产品中NaN ₃ 的质量分数为
。 ②反应结束读数时,若	F 中液面低于球形干燥管液面,	则测定结果 (填"偏高""偏低"或"无影响")。

18.(12 分)一种工业上利用废旧三元锂离子电池正极材料(主要成分为 $LiCo_{l-x-y}Mn_xNi_yO_2$,还含有铝箔、炭黑、有机粘合剂等)综合回收钴、锰、镍、锂的工艺流程如下图所示:

已知: ①Li₂CO₃的溶解度随温度升高而减小。

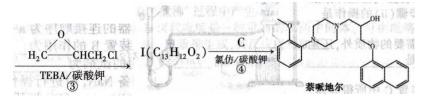
② $K_{sp}(CoC_2O_4) = 1 \times 10^{-18}$, $K_{sp}(MnC_2O_4) = 1 \times 10^{-13}$, $K_{sp}(NiC_2O_4) = 4 \times 10^{-10}$ of

回答下列问题:

- (2)"酸浸"时,下列试剂中最适宜替换H₂O₂的是____。
- a. Na₂CO₃溶液 b. Na₂S₂O₅溶液 c. NaClO 溶液

d.浓盐酸

- (4) "沉锰"过程中加入 $K_2S_2O_8$ 溶液后,溶液先变为紫红色,一段时间后紫红色又褪去,紫红色褪去的原因为 (用离子方程式表示)。
- (5)"沉锂"操作中需将温度升高到90℃,原因是①加快反应速率;②。。


19.(12 分)萘哌地尔是一种常用的肾上腺素受体阻滞药,可由以下工艺合成: i.合成中间体 C:

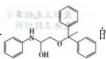
$$HN \left(\text{CH}_2 \text{CH}_2 \text{OH} \right)_2 \xrightarrow{\quad 40\% \text{HBr} \quad} HN \left(\text{CH}_2 \text{CH}_2 \text{Br} \right)_2 \cdot HBr \xrightarrow{\quad D_{\left(\text{C}_7 \text{Ho}_9 \text{NO} \right)} \quad} C_{11} \text{H}_{16} \text{N}_2 \cdot HBr$$

A B C

ii.合成萘哌地尔:

$$\hspace{-0.5cm} E\left(C_{10}H_{8}\right) \xrightarrow{\hspace{0.5cm} \overrightarrow{\text{pl}}} F\left(C_{13}H_{14}\right) \xrightarrow{\hspace{0.5cm} \underbrace{\text{ql}}} G\left(C_{13}H_{14}O_{2}\right) \xrightarrow{\hspace{0.5cm} H_{2}SO_{4}} \hspace{-0.5cm} \rightarrow \hspace{-0.5cm} H\left(C_{10}H_{8}O\right)$$

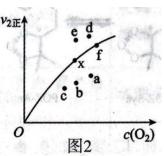
己知:


$$\begin{array}{c} R_{3} \\ R_{1} \longrightarrow COOH \xrightarrow{H_{2}SO_{4}} R_{1}OH \end{array}$$

回答下列问题:

- (1)②的反应类型为_____, D中含有的官能团名称为____。
- (2) G → H 的化学方程式为____。可用 Na₂S 溶液检验 H 中是否混有 G , 其现象为

(3)D 的同分异构体中,能使 FeCl, 溶液变色的有 种, I 的结构简式为

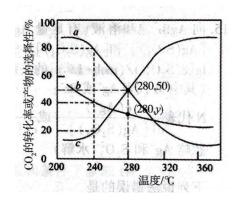

(4)根据上述信息,写出以1,1-二苯乙烷和苯胺为主要原料制备

20.(12 分)研究含 C 、 N 的污染排放物的性质,对建设美丽家乡,打造宜居环境具有重要意义。回答下列问题: (1)城市中 NO_x 和 CO 污染主要来源于汽车尾气, NO 在空气中存在如下反应: $2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$,研究

资料表明该反应的反应速率随温度的升高而减小,上述反应分两步完成,如图 1 所示。

①图 1 中第一步反应的热化学方程式为____。

②由实验数据得到第二步反应的 $v_{2\mathbb{H}}\sim c(O_2)$ 关系如图 2 所示。当升高温度时,反应重新达到平衡,则 x 变为相应的


点为____(填字母)。

(2)将CO₂转化为HCOOH等物质,是实现"双碳"目标的途径之一。

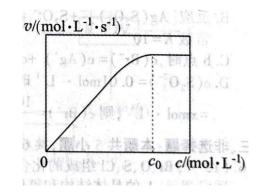
①在某催化剂作用下, CO_2 和 H_2 合成甲酸仅涉及以下反应:

I.
$$CO_2(g) + H_2(g) \rightleftharpoons HCOOH(g) \quad \Delta H_1 < 0$$

II.
$$CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$$
 $\Delta H_2 > 0$

在 2L 刚性容器中,加入 $CO_2(g)$ 和 $H_2(g)$ 各 1mol 发生反应,平衡时 CO_2 的转化率及 HCOOH 和 CO 的选择性随温度变化如图所示。 280° C 时,平衡后的压强与初始压强之比为_____(用含 y 的代数式表示)。 240° C 时,反应 I 的平衡常数 K=_____(结果保留小数点后两位)。

②某研究小组在密闭容器中充分搅拌催化剂 M 的 DMSO(有机溶剂)溶液,反


应过程中保持 $CO_2(g)$ 和 $H_2(g)$ 的压强不变,总反应

 $CO_2(g)+H_2(g)$ \Longrightarrow HCOOH(aq) 的反应速率为 ν ,反应机理如下:

III. $M + CO_2 \rightleftharpoons Q$

IV. $Q + H_2 \rightleftharpoons L$

V. L ⇒ M + HCOOH

高三化学参考答案及评分标准

1.B 2.C 3.C 4.A 5.A 6.D 7.D 8.A 9.C 10.B 11.AC 12.BD 13.D 14.AC

15.BD

16.(12分)

(1)16(1分) O>Cl>S(1分)

(2) NH_3 (2 分) BiH_3 (1 分) <(1 分) $\left[Co(NH_3)_6\right]^{3+}$ 带三个正电荷,对电子的吸引力大,电子跃迁需要的能量高(2 分)

(3)4, 6 (2
$$\%$$
) $\frac{1.517 \times 10^{33}}{a^2 c N_A}$ (2 $\%$)

17.(12分)

(1)g, h, c, d, e, f(2 分) 吸收多余的 N_2O ; 防止空气中的氧气进入装置 C(2 分) 浓硫酸(1 分)

(2)打开分液漏斗上端玻璃塞并旋转活塞,通入一段时间气体(2分)

(3) $NH_3OHCl + NaNO_2 = NaCl + 2H_2O + N_2O ↑ (2 分)$

$$(4)$$
 $\frac{13(V_1 - V_2)}{3mV_m}$ % $(2 分)$ 偏高 $(1 分)$

18.(12分)

(1)+4(1 分)
$$\text{LiPF}_6 + \text{H}_2\text{O}$$
— $\text{LiF} + \text{POF}_3 + 2\text{HF} \uparrow (2 分)$

(2)b(2分)

(3) $10^{-13} \sim 10^{-12}$ (1 分) 将 Ni²⁺、 Mn²⁺转化为稳定配离子(或与 Ni²⁺、 Mn²⁺ 反应降低浓度),避免沉钴时与 Co²⁺共沉淀(2 分)

(4)
$$3Mn^{2+} + 2MnO_4^- + 2H_2O$$
 = $5MnO_2 \downarrow +4H^+ (2 分)$

(5)Li₂CO₃的溶解度随温度升高而减小,温度升高到90℃,提高沉锂反应转化率;升温碳酸分解,平衡

 $2HCO_3^- \rightleftharpoons CO_3^{2-} + H_2CO_3$ 正移, CO_3^{2-} 浓度增大,提高沉锂反应转化率(只要回答出一点即可)(2 分)

19.(12分)

(1)取代反应(1分) 醚键、氨基(2分)

(2)
$$CH_3$$
 $COOH$ CH_3 CH

有淡黄色沉淀生成(1分)

20.(12分)

(1) 2NO(g)
$$\Longrightarrow$$
 N₂O₂(g) $\Delta H = (E_2 - E_3) \text{kJ} \cdot \text{mol}^{-1} (2 \%)$ a(2 $\%$)

(2)①
$$\frac{4-y}{4}$$
(2 分) 1.78(2 分)

② ${\rm CO_2}(g)$ 和 ${\rm H_2}(g)$ 在溶液中的溶解速度(或浓度)不变, ν 不再显著增加(2 分) 增大(2 分)