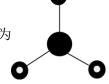
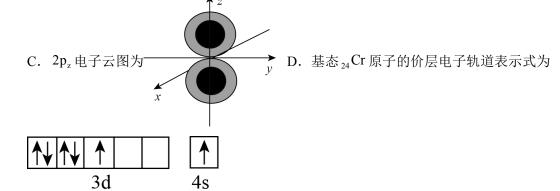
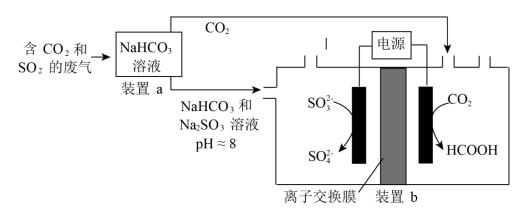

2023 年高考北京卷化学真题


一、单选题


1. 中国科学家首次成功制得大面积单晶石墨炔,是碳材料科学的一大进步。

下列关于金刚石、石墨、石墨炔的说法正确的是

- A. 三种物质中均有碳碳原子间的 σ 键 B. 三种物质中的碳原子都是 sp^3 杂化
- C. 三种物质的晶体类型相同
- D. 三种物质均能导电
- 2. 下列化学用语或图示表达正确的是
 - A. NaCl的电子式为Na:Cl:
- B. NH₃的 VSEPR 模型为



- 3. 下列过程与水解反应无关的是
 - A. 热的纯碱溶液去除油脂
 - B. 重油在高温、高压和催化剂作用下转化为小分子烃
 - C. 蛋白质在酶的作用下转化为氨基酸
 - D. 向沸水中滴入饱和 FeCl₃ 溶液制备 Fe(OH)₃ 胶体

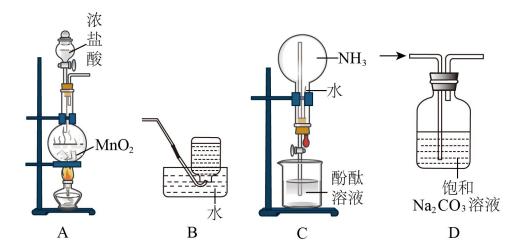
4. 下列事实能用平衡移动原理解释的是

- A. H_2O_2 溶液中加入少量 MnO_2 固体,促进 H_2O_2 分解
- B. 密闭烧瓶内的 NO_2 和 N_2O_4 的混合气体,受热后颜色加深
- C. 铁钉放入浓HNO3中, 待不再变化后, 加热能产生大量红棕色气体
- D. 锌片与稀 H_2SO_4 反应过程中,加入少量 $CuSO_4$ 固体,促进 H_2 的产生
- 5. 回收利用工业废气中的 CO_2 和 SO_2 ,实验原理示意图如下。


下列说法不正确的是

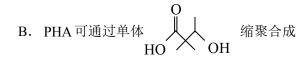
- A. 废气中 SO_2 排放到大气中会形成酸雨
- B. 装置 a 中溶液显碱性的原因是 HCO; 的水解程度大于 HCO; 的电离程度
- C. 装置 a 中溶液的作用是吸收废气中的 CO₂和 SO₂
- D. 装置 b 中的总反应为 $SO_3^{2-} + CO_2 + H_2O = HCOOH + SO_4^{2-}$

6. 下列离子方程式与所给事实不相符的是


- A. Cl_2 制备 84 消毒液(主要成分是 NaClO): $Cl_2 + 2OH^- = Cl^- + ClO^- + H_2O$
- B. 食醋去除水垢中的 CaCO₃: CaCO₃ + 2H⁺ = Ca²⁺ + H₂O + CO₃↑
- C. 利用覆铜板制作印刷电路板: $2Fe^{3+} + Cu = 2Fe^{2+} + Cu^{2+}$
- D. Na_2S 去除废水中的 Hg^{2+} : $Hg^{2+} + S^{2-} = HgS \downarrow$

7. 蔗糖与浓硫酸发生作用的过程如图所示。

下列关于该过程的分析不正确的是

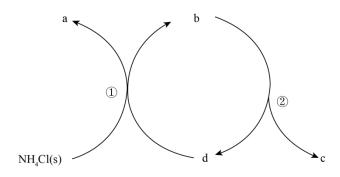

- A. 过程①白色固体变黑,主要体现了浓硫酸的脱水性
- B. 过程②固体体积膨胀,与产生的大量气体有关
- C. 过程中产生能使品红溶液褪色的气体,体现了浓硫酸的酸性
- D. 过程中蔗糖分子发生了化学键的断裂
- 8. 完成下述实验,装置或试剂不正确的是

- A. 实验室制 Cl_2 B. 实验室收集 C_2H_4 C. 验证 NH_3 易溶于水且溶液呈碱性 D. 除去 CO_2 中混有的少量HCl
- 9. 一种聚合物 PHA 的结构简式如下,下列说法不正确的是

$$HO$$
 O
 HO
 O
 HO

A. PHA的重复单元中有两种官能团

- C. PHA 在碱性条件下可发生降解
- D. PHA 中存在手性碳原子


- 10. 下列事实不能通过比较氟元素和氯元素的电负性进行解释的是
 - A. F-F键的键能小于Cl-Cl键的键能
 - B. 三氟乙酸的 K, 大于三氯乙酸的 K,
 - C. 氟化氢分子的极性强于氯化氢分子的极性
 - D. 气态氟化氢中存在(HF)2, 而气态氯化氢中是HCI分子
- 11. 化合物 K 与 L 反应可合成药物中间体 M, 转化关系如下。

$$H_2N$$
 O
 L
 H_2N
 O
 K
 NH_2
 NH_2

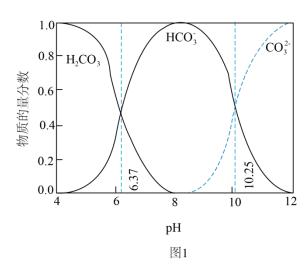
已知 L 能发生银镜反应, 下列说法正确的是

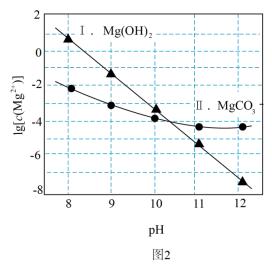
- A. K 的核磁共振氢谱有两组峰
- B. L是乙醛
- C. M 完全水解可得到 K 和 L
- D. 反应物 K 与 L 的化学计量比是 1:1
- 12. 离子化合物 Na_2O_2 和 CaH_2 与水的反应分别为① $2Na_2O_2 + 2H_2O = 4NaOH + O_2$ 个;
- ②CaH₂ + 2H₂O = Ca(OH)₂ + 2H₂↑。下列说法正确的是
 - A. Na₂O₂、CaH₂中均有非极性共价键
 - B. ①中水发生氧化反应, ②中水发生还原反应
 - C. Na_2O_2 中阴、阳离子个数比为1:2, CaH_2 中阴、阳离子个数比为2:1
 - D. 当反应①和②中转移的电子数相同时,产生的 O_2 和 H_2 的物质的量相同

13. 一种分解氯化铵实现产物分离的物质转化关系如下,其中 b、d 代表 MgO 或 Mg(OH)Cl 中的一种。下列说法正确的是

A. a、c 分别是HCl、NH₃

B. d既可以是MgO,也可以是Mg(OH)Cl


C. 已知 MgCl₂ 为副产物,则通入水蒸气可减少 MgCl₂ 的产生


D. 等压条件下,反应①、②的反应热之和,小于氯化铵直接分解的反应热

14. 利用平衡移动原理,分析一定温度下 Mg^{2+} 在不同pH的 Na_2CO_3 体系中的可能产物。

已知: i.图 1 中曲线表示 Na,CO,体系中各含碳粒子的物质的量分数与pH 的关系。

ii.2 中曲线 I 的离子浓度关系符合 $c\left(Mg^{2+}\right)\cdot c^2\left(OH^-\right) = K_{sp}\left[Mg(OH)_2\right]$,曲线 II 的离子浓度关系符合 $c\left(Mg^{2+}\right)\cdot c\left(CO_3^{2-}\right) = K_{sp}\left(MgCO_3\right)$ [注:起始 $c\left(Na_2CO_3\right) = 0.1 mol \cdot L^{-1}$,不同 pH 下 $c\left(CO_3^{2-}\right)$ 由图 1 得到]。

下列说法不正确的是

A. $\pm \boxtimes 1$, pH = 10.25, $c(HCO_3^-) = c(CO_3^{2-})$

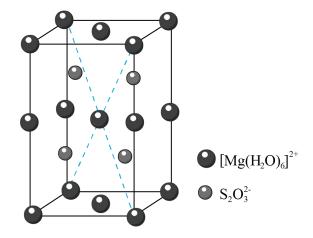
B. 由图 2,初始状态 pH = 11、lg $\left[c \left(Mg^{2+} \right) \right] = -6$,无沉淀生成

C. 由图 2, 初始状态 pH = 9、 $lg[c(Mg^{2+})] = -2$, 平衡后溶液中存在 $c(H_2CO_3) + c(HCO_3^-) + c(CO_3^{2-}) = 0.1 mol \cdot L^{-1}$

D. 由图 1 和图 2,初始状态 pH = 8 、 $lg[c(Mg^{2+})] = -1$,发生反应: $Mg^{2+} + 2HCO_3^- = MgCO_3 \downarrow + CO_2 \uparrow + H_2O_3 \downarrow + CO_3 \uparrow + H_2O_3 \downarrow + H_2O_$

二、结构与性质

15. 硫代硫酸盐是一类具有应用前景的浸金试剂。硫代硫酸根 $(S_2O_3^{2-})$ 可看作是 SO_4^{2-} 中的一个O原子被S原子取代的产物。


(1)基态S原子价层电子排布式是。

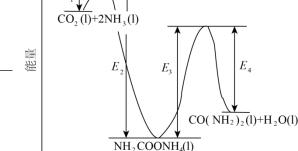
(2)比较S原子和O原子的第一电离能大小,从原子结构的角度说明理由: _____。

 $(3)S_2O_3^{2-}$ 的空间结构是____。

(4)同位素示踪实验可证实 $S_2O_3^{2-}$ 中两个 S 原子的化学环境不同,实验过程为 $SO_3^{2-} \xrightarrow{S} S_2O_3^{2-} \xrightarrow{Ag^*} Ag_2S + SO_4^{2-}$ 。过程 ii 中, $S_2O_3^{2-}$ 断裂的只有硫硫键,若过程 i 所用试剂是 $Na_2^{32}SO_3$ 和 ^{35}S ,过程 ii 含硫产物是_____。

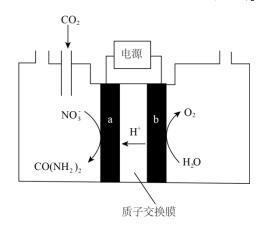
(5) $MgS_2O_3 \cdot 6H_2O$ 的晶胞形状为长方体,边长分别为anm、bnm、cnm,结构如图所示。

晶胞中的 $\left[Mg(H_2O)_6\right]^{2^+}$ 个数为_____。已知 $MgS_2O_3\cdot 6H_2O$ 的摩尔质量是 $Mg\cdot mol^{-1}$,阿伏加德罗常数为 N_Λ ,

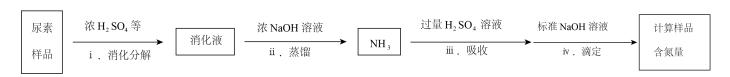

该晶体的密度为______g \cdot cm $^{-3}$ 。 $\left(1$ nm $=10^{-7}$ cm $\right)$

(6)浸金时, $S_2O_3^{2-}$ 作为配体可提供孤电子对与 Au^+ 形成 $\left[Au\left(S_2O_3\right)_2\right]^{3-}$ 。分别判断 $S_2O_3^{2-}$ 中的中心S原子和端基S原子能否做配位原子并说明理由:______。

三、原理综合题

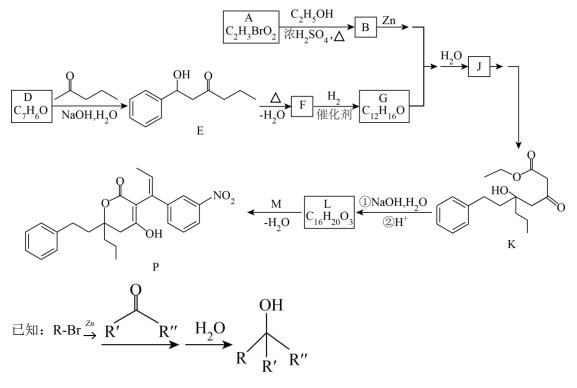

- 16. 尿素 $\left[\text{CO}(\text{NH}_2)_2 \right]$ 合成的发展体现了化学科学与技术的不断进步。
- (1)十九世纪初,用氰酸银(AgOCN)与 NH_4Cl 在一定条件下反应制得 $CO(NH_2)_2$,实现了由无机物到有机物的合成。该反应的化学方程式是
- (2)二十世纪初,工业上以CO₂和NH₃为原料在一定温度和压强下合成尿素。反应分两步:
- i. CO₂和NH₃生成NH₂COONH₄;
- ii. NH₂COONH₄分解生成尿素。

结合反应过程中能量变化示意图,下列说法正确的是_____(填序号)。


反应过程

- a. 活化能: 反应 i <反应 ii
- b. i 为放热反应, ii 为吸热反应
- c. $CO_2(1) + 2NH_3(1) = CO(NH_2)_2(1) + H_2O(1)\Delta H = E_1 E_4$
- (3)近年研究发现,电催化 CO_2 和含氮物质(NO_3 等)在常温常压下合成尿素,有助于实现碳中和及解决含氮废水污染问题。向一定浓度的 KNO_3 溶液通 CO_2 至饱和,在电极上反应生成 $CO(NH_2)_2$,电解原理如图所示。

- ①电极 b 是电解池的 极。
- ②电解过程中生成尿素的电极反应式是。
- (4)尿素样品含氮量的测定方法如下。


已知:溶液中c(NH₄)不能直接用 NaOH 溶液准确滴定。

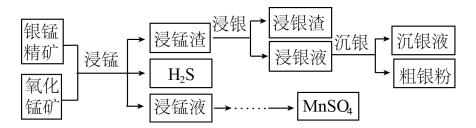
- ①消化液中的含氮粒子是。
- ②步骤 iy 中标准 NaOH 溶液的浓度和消耗的体积分别为c和V, 计算样品含氮量还需要的实验数据有。

四、有机推断题(新)

17. 化合物 P 是合成抗病毒药物普拉那韦的原料, 其合成路线如下。

- (1)A 中含有羧基, A→B 的化学方程式是
- (2)D 中含有的官能团是____。
- (3)关于 D→E 的反应:

① 的羰基相邻碳原子上的 C-H 键极性强,易断裂,原因是_____。


- ②该条件下还可能生成一种副产物,与 E 互为同分异构体。该副产物的结构简式是____。
- (4)下列说法正确的是____(填序号)。
- a. F 存在顺反异构体
- b. J和 K 互为同系物
- c. 在加热和Cu催化条件下,J不能被 O_2 氧化
- (5)L 分子中含有两个六元环。L的结构简式是。

$$(6)$$
已知: $R^2 \rightleftharpoons R^1$ $R^2 \rightarrow R^1$,依据 $D \rightarrow E$ 的原理, L 和 M 反应得到了 P 。 M 的结构简式

是。

五、工业流程题

18. 以银锰精矿(主要含 Ag_2S 、 MnS、 FeS_2)和氧化锰矿(主要含 MnO_2)为原料联合提取银和锰的一种流程示意图如下。

已知:酸性条件下, MnO_2 的氧化性强于 Fe^{3+} 。

- (1) "浸锰"过程是在 H_2SO_4 溶液中使矿石中的锰元素浸出,同时去除 FeS_2 ,有利于后续银的浸出:矿石中的银以 Ag_2S 的形式残留于浸锰渣中。
- ①"浸锰"过程中,发生反应 $MnS + 2H^+ = Mn^{2+} + H_2 S \uparrow$,则可推断: $K_{sp} \big(MnS \big)$ ______(填">"或"<") $K_{sp} \big(Ag_2 S \big)$ 。
- ②在 H_2SO_4 溶液中,银锰精矿中的 FeS_2 和氧化锰矿中的 MnO_2 发生反应,则浸锰液中主要的金属阳离子有_____。
- (2) "浸银"时,使用过量 $FeCl_3$ 、HCl和 $CaCl_2$ 的混合液作为浸出剂,将 Ag_2S 中的银以 $[AgCl_2]$ ^{*}形式浸出。
- ①将"浸银"反应的离子方程式补充完整: 。

$$\square\operatorname{Fe}^{\scriptscriptstyle{3+}} + \operatorname{Ag}_2\operatorname{S} + \square \underline{\hspace{2cm}} + 2\left[\operatorname{AgCl}_2\right]^{\scriptscriptstyle{-}} + \operatorname{S}$$

- ②结合平衡移动原理,解释浸出剂中Cl-、H+的作用: 。
- (3)"沉银"过程中需要过量的铁粉作为还原剂。
- ①该步反应的离子方程式有____。
- ②一定温度下, Ag的沉淀率随反应时间的变化如图所示。解释t分钟后Ag的沉淀率逐渐减小的原

因: ______。
100-______。
时间/min

(4)结合"浸锰"过程,从两种矿石中各物质利用的角度,分析联合提取银和锰的优势: _____。

六、实验探究题

19. 资料显示, I2可以将Cu氧化为Cu2+。某小组同学设计实验探究Cu被I2氧化的产物及铜元素的价态。

已知: I_2 易溶于KI 溶液,发生反应 $I_2+I^ \Longrightarrow I_3^-$ (红棕色); I_2 和 I_3 氧化性几乎相同。

I.将等体积的KI溶液加入到mmol铜粉和 $mmolI_2(n>m)$ 的固体混合物中,振荡。

实验记录如下:

	c(KI)	实验现象
实验Ⅰ	$0.01 \mathrm{mol} \cdot \mathrm{L}^{-1}$	极少量 I_2 溶解,溶液为淡红色;充分反应后,红色的铜粉转化为白色沉淀,溶液仍为淡红色
实验Ⅱ	$0.1 \text{mol} \cdot \text{L}^{-1}$	部分 I_2 溶解,溶液为红棕色;充分反应后,红色的铜粉转化为白色沉淀,溶液仍为红棕色
实验Ⅲ	$4 \text{mol} \cdot \text{L}^{-1}$	I_2 完全溶解,溶液为深红棕色;充分反应后,红色的铜粉完全溶解,溶液为深红棕色

(1)初始阶段,Cu 被氧化的反应速率:实验 I _____(填">""<"或"=")实验 ${\mathbb I}$ 。

(2)实验Ⅲ所得溶液中,被氧化的铜元素的可能存在形式有 $\left[\operatorname{Cu}\left(\operatorname{H}_2\operatorname{O}\right)_4\right]^{2+}$ (蓝色)或 $\left[\operatorname{CuI}_2\right]^-$ (无色),进行以下实验探究:

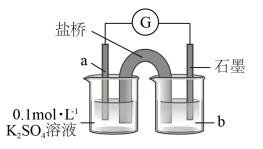
步骤 a. 取实验Ⅲ的深红棕色溶液,加入CCl₄,多次萃取、分液。

步骤 b. 取分液后的无色水溶液,滴入浓氨水。溶液颜色变浅蓝色,并逐渐变深。

i. 步骤 a 的目的是_____。

ii. 查阅资料, $2Cu^{2+}+4I^-=2CuI$ ↓ $+I_2$, $\left[Cu\left(NH_3\right)_2\right]^+$ (无色)容易被空气氧化。用离子方程式解释步骤 b 的溶液中

发生的变化: _____。


(3)结合实验Ⅲ,推测实验 I 和 Ⅱ中的白色沉淀可能是 CuI,实验 I 中铜被氧化的化学方程式

是 。分别取实验Ⅰ和Ⅱ充分反应后的固体,洗涤后得到白色沉淀,加入浓KI溶液,

(填实验现象),观察到少量红色的铜。分析铜未完全反应的原因是。

(4)上述实验结果, I₂仅将Cu氧化为+1价。在隔绝空气的条件下进行电化学实验,证实了I₂能将Cu氧化为Cu²⁺。

装置如图所示, a、b分别是。

(5)运用氧化还原反应规律,分析在上述实验中Cu被L氧化的产物中价态不同的原因: _____。